Papers
Topics
Authors
Recent
Search
2000 character limit reached

Improved semiclassical model for real time evaporation of Matrix black holes

Published 10 May 2021 in hep-th | (2105.04577v2)

Abstract: We study real time classical matrix mechanics of a simplified $2\times 2$ matrix model inspired by the black hole evaporation problem. This is a step towards making a quantitative model of real time evaporation of a black hole, which is realized as a bound state of D0-branes in string theory. The model we study is the reduction of Yang Mills in $2+1$ dimension to $0+1$ dimensions, which has been corrected with an additional potential that can be interpreted as a zero point energy for fermions. Our goal is to understand the lifetime of such a classical bound state object in the classical regime. To do so, we pay particular attention to when D-particles separate to check that the "off diagonal modes" of the matrices become adiabatic and use that information to improve on existing models of evaporation. It turns out that the naive expectation value of the lifetime with the fermionic correction is infinite. This is a logarithmic divergence that arises from very large excursions in the separation between the branes near the threshold for classical evaporation. The adiabatic behavior lets us get some analytic control of the dynamics in this regime to get this estimate. This divergence is cutoff in the quantum theory due to quantization of the adiabatic parameter, resulting in a long lifetime of the bound state, with a parametric dependence of order $\log(1/\hbar)$.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.