Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Probabilistic Top-k Dominating Queries in Distributed Uncertain Databases (Technical Report) (2105.04486v2)

Published 10 May 2021 in cs.DB

Abstract: In many real-world applications such as business planning and sensor data monitoring, one important, yet challenging, the task is to rank objects(e.g., products, documents, or spatial objects) based on their ranking scores and efficiently return those objects with the highest scores. In practice, due to the unreliability of data sources, many real-world objects often contain noises and are thus imprecise and uncertain. In this paper, we study the problem of probabilistic top-k dominating(PTD) query on such large-scale uncertain data in a distributed environment, which retrieves k uncertain objects from distributed uncertain databases(on multiple distributed servers), having the largest ranking scores with high confidences. In order to efficiently tackle the distributed PTD problem, we propose a MapReduce framework for processing distributed PTD queries over distributed uncertain databases. In this MapReduce framework, we design effective pruning strategies to filter out false alarms in the distributed setting, propose cost-model-based index distribution mechanisms over servers, and develop efficient distributed PTD query processing algorithms. Extensive experiments have demonstrated the efficiency and effectiveness of our proposed distributed PTD approach on both real and synthetic data sets through various experimental settings.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Niranjan Rai (2 papers)
  2. Xiang Lian (28 papers)

Summary

We haven't generated a summary for this paper yet.