Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DocReader: Bounding-Box Free Training of a Document Information Extraction Model (2105.04313v1)

Published 10 May 2021 in cs.CV and cs.LG

Abstract: Information extraction from documents is a ubiquitous first step in many business applications. During this step, the entries of various fields must first be read from the images of scanned documents before being further processed and inserted into the corresponding databases. While many different methods have been developed over the past years in order to automate the above extraction step, they all share the requirement of bounding-box or text segment annotations of their training documents. In this work we present DocReader, an end-to-end neural-network-based information extraction solution which can be trained using solely the images and the target values that need to be read. The DocReader can thus leverage existing historical extraction data, completely eliminating the need for any additional annotations beyond what is naturally available in existing human-operated service centres. We demonstrate that the DocReader can reach and surpass other methods which require bounding-boxes for training, as well as provide a clear path for continual learning during its deployment in production.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com