Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 133 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Bayesian spatio-temporal model for high-resolution short-term forecasting of precipitation fields (2105.03269v1)

Published 7 May 2021 in stat.ME and stat.AP

Abstract: With extreme weather events becoming more common, the risk posed by surface water flooding is ever increasing. In this work we propose a model, and associated Bayesian inference scheme, for generating probabilistic (high-resolution short-term) forecasts of localised precipitation. The parametrisation of our underlying hierarchical dynamic spatio-temporal model is motivated by a forward-time, centred-space finite difference solution to a collection of stochastic partial differential equations, where the main driving forces are advection and diffusion. Observations from both weather radar and ground based rain gauges provide information from which we can learn about the likely values of the (latent) precipitation field in addition to other unknown model parameters. Working in the Bayesian paradigm provides a coherent framework for capturing uncertainty both in the underlying model parameters and also in our forecasts. Further, appealing to simulation based (MCMC) sampling yields a straightforward solution to handling zeros, treated as censored observations, via data augmentation. Both the underlying state and the observations are of moderately large dimension ($\mathcal{O}(104)$ and $\mathcal{O}(103)$ respectively) and this renders standard inference approaches computationally infeasible. Our solution is to embed the ensemble Kalman smoother within a Gibbs sampling scheme to facilitate approximate Bayesian inference in reasonable time. Both the methodology and the effectiveness of our posterior sampling scheme are demonstrated via simulation studies and also by a case study of real data from the Urban Observatory project based in Newcastle upon Tyne, UK.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.