Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Bayesian model of information cascades

Published 7 May 2021 in cs.MA | (2105.03166v1)

Abstract: An information cascade is a circumstance where agents make decisions in a sequential fashion by following other agents. Bikhchandani et al., predict that once a cascade starts it continues, even if it is wrong, until agents receive an external input such as public information. In an information cascade, even if an agent has its own personal choice, it is always overridden by observation of previous agents' actions. This could mean agents end up in a situation where they may act without valuing their own information. As information cascades can have serious social consequences, it is important to have a good understanding of what causes them. We present a detailed Bayesian model of the information gained by agents when observing the choices of other agents and their own private information. Compared to prior work, we remove the high impact of the first observed agent's action by incorporating a prior probability distribution over the information of unobserved agents and investigate an alternative model of choice to that considered in prior work: weighted random choice. Our results show that, in contrast to Bikhchandani's results, cascades will not necessarily occur and adding prior agents' information will delay the effects of cascades.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.