Papers
Topics
Authors
Recent
Search
2000 character limit reached

PEMNET: A Transfer Learning-based Modeling Approach of High-Temperature Polymer Electrolyte Membrane Electrochemical Systems

Published 7 May 2021 in cs.LG and physics.chem-ph | (2105.03057v2)

Abstract: Widespread adoption of high-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) and HT-PEM electrochemical hydrogen pumps (HT-PEM ECHPs) requires models and computational tools that provide accurate scale-up and optimization. Knowledge-based modeling has limitations as it is time consuming and requires information about the system that is not always available (e.g., material properties and interfacial behavior between different materials). Data-driven modeling on the other hand, is easier to implement, but often necessitates large datasets that could be difficult to obtain. In this contribution, knowledge-based modeling and data-driven modeling are uniquely combined by implementing a Few-Shot Learning (FSL) approach. A knowledge-based model originally developed for a HT-PEMFC was used to generate simulated data (887,735 points) and used to pretrain a neural network source model. Furthermore, the source model developed for HT-PEMFCs was successfully applied to HT-PEM ECHPs - a different electrochemical system that utilizes similar materials to the fuel cell. Experimental datasets from both HT-PEMFCs and HT-PEM ECHPs with different materials and operating conditions (~50 points each) were used to train 8 target models via FSL. Models for the unseen data reached high accuracies in all cases (rRMSE between 1.04 and 3.73% for HT-PEMCs and between 6.38 and 8.46% for HT-PEM ECHPs).

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.