Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A Tight Parallel Repetition Theorem for Partially Simulatable Interactive Arguments via Smooth KL-Divergence (2105.00801v1)

Published 3 May 2021 in cs.CR

Abstract: Hardness amplification is a central problem in the study of interactive protocols. While ``natural'' parallel repetition transformation is known to reduce the soundness error of some special cases of interactive arguments: three-message protocols and public-coin protocols, it fails to do so in the general case. The only known round-preserving approach that applies to all interactive arguments is Haitner's random-terminating transformation [SICOMP '13], who showed that the parallel repetition of the transformed protocol reduces the soundness error at a weak exponential rate: if the original $m$-round protocol has soundness error $1-p$, then the $n$-parallel repetition of its random-terminating variant has soundness error $(1-p){p n / m4}$ (omitting constant factors). Hastad et al. [TCC '10] have generalized this result to partially simulatable interactive arguments, showing that the $n$-fold repetition of an $m$-round $\delta$-simulatable argument of soundness error $1-p$ has soundness error $(1-p){p \delta2 n / m2}$. When applied to random-terminating arguments, the Hastad et al. bound matches that of Haitner. In this work we prove that parallel repetition of random-terminating arguments reduces the soundness error at a much stronger exponential rate: the soundness error of the $n$ parallel repetition is $(1-p){n / m}$, only an $m$ factor from the optimal rate of $(1-p)n$ achievable in public-coin and three-message arguments. The result generalizes to $\delta$-simulatable arguments, for which we prove a bound of $(1-p){\delta n / m}$. This is achieved by presenting a tight bound on a relaxed variant of the KL-divergence between the distribution induced by our reduction and its ideal variant, a result whose scope extends beyond parallel repetition proofs. We prove the tightness of the above bound for random-terminating arguments, by presenting a matching protocol.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube