Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Channels of Small Log-Ratio Leakage and Characterization of Two-Party Differentially Private Computation (2105.00770v3)

Published 3 May 2021 in cs.CC and cs.CR

Abstract: Consider a PPT two-party protocol $\pi=(A,B)$ in which the parties get no private inputs and obtain outputs $OA,OB\in {0,1}$, and let $VA$ and $VB$ denote the parties' individual views. Protocol $\pi$ has $\alpha$-agreement if $Pr[OA=OB]=1/2+\alpha$. The leakage of $\pi$ is the amount of information a party obtains about the event ${OA=OB}$; that is, the leakage $\epsilon$ is the maximum, over $P\in{A,B}$, of the distance between $VP|OA=OB$ and $VP|OA\neq OB$. Typically, this distance is measured in statistical distance, or, in the computational setting, in computational indistinguishability. For this choice, Wullschleger [TCC 09] showed that if $\alpha>>\epsilon$ then the protocol can be transformed into an OT protocol. We consider measuring the protocol leakage by the log-ratio distance (which was popularized by its use in the differential privacy framework). The log-ratio distance between X,Y over domain \Omega is the minimal $\epsilon>0$ for which, for every $v\in\Omega$, $log(Pr[X=v]/Pr[Y=v])\in [-\epsilon,\epsilon]$. In the computational setting, we use computational indistinguishability from having log-ratio distance $\epsilon$. We show that a protocol with (noticeable) accuracy $\alpha\in\Omega(\epsilon2)$ can be transformed into an OT protocol (note that this allows $\epsilon>>\alpha$). We complete the picture, in this respect, showing that a protocol with $\alpha\in o(\epsilon2)$ does not necessarily imply OT. Our results hold for both the information theoretic and the computational settings, and can be viewed as a "fine grained" approach to "weak OT amplification". We then use the above result to fully characterize the complexity of differentially private two-party computation for the XOR function, answering the open question put by Goyal, Khurana, Mironov, Pandey, and Sahai [ICALP 16] and Haitner, Nissim, Omri, Shaltiel, and Silbak [FOCS 18].

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.