Flattening Multiparameter Hierarchical Clustering Functors
Abstract: We bring together topological data analysis, applied category theory, and machine learning to study multiparameter hierarchical clustering. We begin by introducing a procedure for flattening multiparameter hierarchical clusterings. We demonstrate that this procedure is a functor from a category of multiparameter hierarchical partitions to a category of binary integer programs. We also include empirical results demonstrating its effectiveness. Next, we introduce a Bayesian update algorithm for learning clustering parameters from data. We demonstrate that the composition of this algorithm with our flattening procedure satisfies a consistency property.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.