Papers
Topics
Authors
Recent
2000 character limit reached

Anisotropic Triebel-Lizorkin spaces and wavelet coefficient decay over one-parameter dilation groups, I (2104.14361v3)

Published 29 Apr 2021 in math.FA and math.CA

Abstract: This paper provides maximal function characterizations of anisotropic Triebel-Lizorkin spaces associated to general expansive matrices for the full range of parameters $p \in (0,\infty)$, $q \in (0,\infty]$ and $\alpha \in \mathbb{R}$. The equivalent norm is defined in terms of the decay of wavelet coefficients, quantified by a Peetre-type space over a one-parameter dilation group. As an application, the existence of dual molecular frames and Riesz sequences is obtained; the wavelet systems are generated by translations and anisotropic dilations of a single function, where neither the translation nor dilation parameters are required to belong to a discrete subgroup. Explicit criteria for molecules are given in terms of mild decay, moment, and smoothness conditions.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.