Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Smartphone based Application for Skin Cancer Classification Using Deep Learning with Clinical Images and Lesion Information (2104.14353v1)

Published 28 Apr 2021 in eess.IV and cs.CV

Abstract: Over the last decades, the incidence of skin cancer, melanoma and non-melanoma, has increased at a continuous rate. In particular for melanoma, the deadliest type of skin cancer, early detection is important to increase patient prognosis. Recently, deep neural networks (DNNs) have become viable to deal with skin cancer detection. In this work, we present a smartphone-based application to assist on skin cancer detection. This application is based on a Convolutional Neural Network(CNN) trained on clinical images and patients demographics, both collected from smartphones. Also, as skin cancer datasets are imbalanced, we present an approach, based on the mutation operator of Differential Evolution (DE) algorithm, to balance data. In this sense, beyond provides a flexible tool to assist doctors on skin cancer screening phase, the method obtains promising results with a balanced accuracy of 85% and a recall of 96%.

Citations (13)

Summary

We haven't generated a summary for this paper yet.