Papers
Topics
Authors
Recent
Search
2000 character limit reached

Probabilistic Safety-Assured Adaptive Merging Control for Autonomous Vehicles

Published 29 Apr 2021 in cs.RO | (2104.14159v1)

Abstract: Autonomous vehicles face tremendous challenges while interacting with human drivers in different kinds of scenarios. Developing control methods with safety guarantees while performing interactions with uncertainty is an ongoing research goal. In this paper, we present a real-time safe control framework using bi-level optimization with Control Barrier Function (CBF) that enables an autonomous ego vehicle to interact with human-driven cars in ramp merging scenarios with a consistent safety guarantee. In order to explicitly address motion uncertainty, we propose a novel extension of control barrier functions to a probabilistic setting with provable chance-constrained safety and analyze the feasibility of our control design. The formulated bi-level optimization framework entails first choosing the ego vehicle's optimal driving style in terms of safety and primary objective, and then minimally modifying a nominal controller in the context of quadratic programming subject to the probabilistic safety constraints. This allows for adaptation to different driving strategies with a formally provable feasibility guarantee for the ego vehicle's safe controller. Experimental results are provided to demonstrate the effectiveness of our proposed approach.

Citations (42)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.