Papers
Topics
Authors
Recent
Search
2000 character limit reached

Algorithmic Factors Influencing Bias in Machine Learning

Published 28 Apr 2021 in cs.LG and stat.ML | (2104.14014v1)

Abstract: It is fair to say that many of the prominent examples of bias in Machine Learning (ML) arise from bias that is there in the training data. In fact, some would argue that supervised ML algorithms cannot be biased, they reflect the data on which they are trained. In this paper we demonstrate how ML algorithms can misrepresent the training data through underestimation. We show how irreducible error, regularization and feature and class imbalance can contribute to this underestimation. The paper concludes with a demonstration of how the careful management of synthetic counterfactuals can ameliorate the impact of this underestimation bias.

Citations (20)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.