Papers
Topics
Authors
Recent
2000 character limit reached

Driver State and Behavior Detection Through Smart Wearables

Published 28 Apr 2021 in cs.HC | (2104.13889v1)

Abstract: Integrating driver, in-cabin, and outside environment's contextual cues into the vehicle's decision making is the centerpiece of semi-automated vehicle safety. Multiple systems have been developed for providing context to the vehicle, which often rely on video streams capturing drivers' physical and environmental states. While video streams are a rich source of information, their ability in providing context can be challenging in certain situations, such as low illuminance environments (e.g., night driving), and they are highly privacy-intrusive. In this study, we leverage passive sensing through smartwatches for classifying elements of driving context. Specifically, through using the data collected from 15 participants in a naturalistic driving study, and by using multiple machine learning algorithms such as random forest, we classify driver's activities (e.g., using phone and eating), outside events (e.g., passing intersection and changing lane), and outside road attributes (e.g., driving in a city versus a highway) with an average F1 score of 94.55, 98.27, and 97.86 % respectively, through 10-fold cross-validation. Our results show the applicability of multimodal data retrieved through smart wearable devices in providing context in real-world driving scenarios and pave the way for a better shared autonomy and privacy-aware driving data-collection, analysis, and feedback for future autonomous vehicles.

Citations (12)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.