Papers
Topics
Authors
Recent
Search
2000 character limit reached

Multi-fairness under class-imbalance

Published 27 Apr 2021 in cs.LG and cs.CY | (2104.13312v3)

Abstract: Recent studies showed that datasets used in fairness-aware machine learning for multiple protected attributes (referred to as multi-discrimination hereafter) are often imbalanced. The class-imbalance problem is more severe for the often underrepresented protected group (e.g. female, non-white, etc.) in the critical minority class. Still, existing methods focus only on the overall error-discrimination trade-off, ignoring the imbalance problem, thus amplifying the prevalent bias in the minority classes. Therefore, solutions are needed to solve the combined problem of multi-discrimination and class-imbalance. To this end, we introduce a new fairness measure, Multi-Max Mistreatment (MMM), which considers both (multi-attribute) protected group and class membership of instances to measure discrimination. To solve the combined problem, we propose a boosting approach that incorporates MMM-costs in the distribution update and post-training selects the optimal trade-off among accurate, balanced, and fair solutions. The experimental results show the superiority of our approach against state-of-the-art methods in producing the best balanced performance across groups and classes and the best accuracy for the protected groups in the minority class.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.