Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

IATos: AI-powered pre-screening tool for COVID-19 from cough audio samples (2104.13247v2)

Published 27 Apr 2021 in eess.AS and cs.SD

Abstract: OBJECTIVE: Our objective is to evaluate the possibility of using cough audio recordings (spontaneous or simulated) to detect sound patterns in people who are diagnosed with COVID-19. The research question that led our work was: what is the sensitivity and specificity of a machine learning based COVID-19 cough classifier, using RT-PCR tests as gold standard? SETTING: The audio samples that were collected for this study belong to individuals who were swabbed in the City of Buenos Aires in 20 public and 1 private facilities where RT-PCR studies were carried out on patients suspected of COVID, and 14 out-of-hospital isolation units for patients with confirmed COVID mild cases. The audios were collected through the Buenos Aires city government WhatsApp chatbot that was specifically designed to address citizen inquiries related to the coronavirus pandemic (COVID-19). PARTICIPANTS: The data collected corresponds to 2821 individuals who were swabbed in the City of Buenos Aires, between August 11 and December 2, 2020. Individuals were divided into 1409 that tested positive for COVID-19 and 1412 that tested negative. From this sample group, 52.6% of the individuals were female and 47.4% were male. 2.5% were between the age of 0 and 20 , 61.1% between the age of 21 and 40 , 30.3% between the age of 41 and 60 and 6.1% were over 61 years of age. RESULTS: Using the dataset of 2821 individuals our results showed that the neural network classifier was able to discriminate between the COVID-19 positive and the healthy coughs with an accuracy of 86%. This accuracy obtained during the training process was later tested and confirmed with a second dataset corresponding to 492 individuals.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. D. Trejo Pizzo (1 paper)
  2. S. Esteban (1 paper)
Citations (24)

Summary

We haven't generated a summary for this paper yet.