Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

On the connected components of Shimura varieties for CM unitary groups in odd variables (2104.13086v3)

Published 27 Apr 2021 in math.NT and math.AG

Abstract: We study the prime-to-$p$ Hecke action on the projective limit of the sets of connected components of Shimura varieties with fixed parahoric or Bruhat--Tits level at $p$. In particular, we construct infinitely many Shimura varieties for CM unitary groups in odd variables for which the considering actions are not transitive. We prove this result by giving negative examples on the question of Bruhat--Colliot-Th\'el`ene--Sansuc--Tits or its variant, which is related to the weak approximation on tori over $\mathbb{Q}$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.