Uniform asymptotic expansions for the Whittaker functions $M_{κ,μ}(z)$ and $W_{κ,μ}(z)$ with $μ$ large (2104.12912v2)
Abstract: Uniform asymptotic expansions are derived for Whittaker's confluent hypergeometric functions $M_{\kappa,\mu}(z)$ and $W_{\kappa,\mu}(z)$, as well as the numerically satisfactory companion function $W_{-\kappa,\mu}(ze{-\pi i})$. The expansions are uniformly valid for $\mu \rightarrow \infty$, $0 \leq \kappa/\mu \leq 1-\delta <1$, and for $0 \leq \arg(z) \leq \pi$. By using appropriate connection and analytic continuation formulas these expansions can be extended to all unbounded nonzero complex $z$. The approximations come from recent asymptotic expansions involving elementary functions and Airy functions, and explicit error bounds are either provided or available.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.