Papers
Topics
Authors
Recent
2000 character limit reached

Random subcomplexes and Betti numbers of random edge ideals

Published 26 Apr 2021 in math.AC, math.CO, and math.PR | (2104.12882v3)

Abstract: We study homological properties of random quadratic monomial ideals in a polynomial ring $R = {\mathbb K}[x_1, \dots x_n]$, utilizing methods from the Erd\"{o}s-R\'{e}nyi model of random graphs. Here for a graph $G \sim G(n, p)$ we consider the `coedge' ideal $I_G$ corresponding to the missing edges of $G$, and study Betti numbers of $R/I_G$ as $n$ tends to infinity. Our main results involve setting the edge probability $p = p(n)$ so that asymptotically almost surely the Krull dimension of $R/I_G$ is fixed. Under these conditions we establish various properties regarding the Betti table of $R/I_G$, including sharp bounds on regularity and projective dimension, and distribution of nonzero normalized Betti numbers. These results extend work of Erman and Yang, who studied such ideals in the context of conjectured phenomena in the nonvanishing of asymptotic syzygies. Along the way we establish results regarding subcomplexes of random clique complexes as well as notions of higher-dimensional vertex $k$-connectivity that may be of independent interest.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.