Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Consistency of invariance-based randomization tests (2104.12260v2)

Published 25 Apr 2021 in math.ST, stat.ME, and stat.TH

Abstract: Invariance-based randomization tests -- such as permutation tests, rotation tests, or sign changes -- are an important and widely used class of statistical methods. They allow drawing inferences under weak assumptions on the data distribution. Most work focuses on their type I error control properties, while their consistency properties are much less understood. We develop a general framework and a set of results on the consistency of invariance-based randomization tests in signal-plus-noise models. Our framework is grounded in the deep mathematical area of representation theory. We allow the transforms to be general compact topological groups, such as rotation groups, acting by general linear group representations. We study test statistics with a generalized sub-additivity property. We apply our framework to a number of fundamental and highly important problems in statistics, including sparse vector detection, testing for low-rank matrices in noise, sparse detection in linear regression, and two-sample testing. Comparing with minimax lower bounds, we find perhaps surprisingly that in some cases, randomization tests detect signals at the minimax optimal rate.

Citations (18)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)