Papers
Topics
Authors
Recent
2000 character limit reached

On the Rigorous Derivation of the Incompressible Euler Equation from Newton's Second Law (2104.11723v1)

Published 23 Apr 2021 in math.AP, math-ph, and math.MP

Abstract: A longstanding problem in mathematical physics is the rigorous derivation of the incompressible Euler equation from Newtonian mechanics. Recently, Han-Kwan and Iacobelli arXiv:2006.14924 showed that in the monokinetic regime, one can directly obtain the Euler equation from a system of $N$ particles interacting in $\mathbb{T}d$, $d\geq 2$, via Newton's second law through a supercritical mean-field limit. Namely, the coupling constant $\lambda$ in front of the pair potential, which is Coulombic, scales like $N{-\theta}$ for some $\theta \in (0,1)$, in contrast to the usual mean-field scaling $\lambda\sim N{-1}$. Assuming $\theta\in (1-\frac{2}{d(d+1)},1)$, they showed that the empirical measure of the system is effectively described by the solution to the Euler equation as $N\rightarrow\infty$. Han-Kwan and Iacobelli asked if their range for $\theta$ was optimal. We answer this question in the negative by showing the validity of the incompressible Euler equation in the limit $N\rightarrow\infty$ for $\theta \in (1-\frac{2}{d},1)$. For reasons of scaling, this range appears optimal in all dimensions. Our proof is based on Serfaty's modulated-energy method, but compared to that of Han-Kwan and Iacobelli, crucially uses an improved "renormalized commutator" estimate to obtain the larger range for $\theta$.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.