Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SoT: Delving Deeper into Classification Head for Transformer (2104.10935v2)

Published 22 Apr 2021 in cs.CV, cs.AI, and cs.LG

Abstract: Transformer models are not only successful in NLP but also demonstrate high potential in computer vision (CV). Despite great advance, most of works only focus on improvement of architectures but pay little attention to the classification head. For years transformer models base exclusively on classification token to construct the final classifier, without explicitly harnessing high-level word tokens. In this paper, we propose a novel transformer model called second-order transformer (SoT), exploiting simultaneously the classification token and word tokens for the classifier. Specifically, we empirically disclose that high-level word tokens contain rich information, which per se are very competent with the classifier and moreover, are complementary to the classification token. To effectively harness such rich information, we propose multi-headed global cross-covariance pooling with singular value power normalization, which shares similar philosophy and thus is compatible with the transformer block, better than commonly used pooling methods. Then, we study comprehensively how to explicitly combine word tokens with classification token for building the final classification head. For CV tasks, our SoT significantly improves state-of-the-art vision transformers on challenging benchmarks including ImageNet and ImageNet-A. For NLP tasks, through fine-tuning based on pretrained language transformers including GPT and BERT, our SoT greatly boosts the performance on widely used tasks such as CoLA and RTE. Code will be available at https://peihuali.org/SoT

Citations (11)

Summary

We haven't generated a summary for this paper yet.