Papers
Topics
Authors
Recent
Search
2000 character limit reached

Eye Know You: Metric Learning for End-to-end Biometric Authentication Using Eye Movements from a Longitudinal Dataset

Published 21 Apr 2021 in cs.HC and cs.LG | (2104.10489v2)

Abstract: The permanence of eye movements as a biometric modality remains largely unexplored in the literature. The present study addresses this limitation by evaluating a novel exponentially-dilated convolutional neural network for eye movement authentication using a recently proposed longitudinal dataset known as GazeBase. The network is trained using multi-similarity loss, which directly enables the enrollment and authentication of out-of-sample users. In addition, this study includes an exhaustive analysis of the effects of evaluating on various tasks and downsampling from 1000 Hz to several lower sampling rates. Our results reveal that reasonable authentication accuracy may be achieved even during both a low-cognitive-load task and at low sampling rates. Moreover, we find that eye movements are quite resilient against template aging after as long as 3 years.

Citations (27)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.