Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Multiplicities and Betti numbers in local algebra via lim Ulrich points (2104.10140v2)

Published 20 Apr 2021 in math.AC and math.AG

Abstract: This work concerns finite free complexes with finite length homology over a commutative noetherian local ring $R$. The focus is on complexes that have length $\mathrm{dim}\, R$, which is the smallest possible value, and in particular on free resolutions of modules of finite length and finite projective dimension. Lower bounds are obtained on the Euler characteristic of such short complexes when $R$ is a strict complete intersection, and also on the Dutta multiplicity, when $R$ is the localization at its maximal ideal of a standard graded algebra over a field of positive prime characteristic. The key idea in the proof is the construction of a suitable Ulrich module, or, in the latter case, a sequence of modules that have the Ulrich property asymptotically, and with good convergence properties in the rational Grothendieck group of $R$. Such a sequence is obtained by constructing an appropriate sequence of sheaves on the associated projective variety.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.