Papers
Topics
Authors
Recent
Search
2000 character limit reached

GLiDE: Generalizable Quadrupedal Locomotion in Diverse Environments with a Centroidal Model

Published 20 Apr 2021 in cs.RO and cs.LG | (2104.09771v3)

Abstract: Model-free reinforcement learning (RL) for legged locomotion commonly relies on a physics simulator that can accurately predict the behaviors of every degree of freedom of the robot. In contrast, approximate reduced-order models are commonly used for many model predictive control strategies. In this work we abandon the conventional use of high-fidelity dynamics models in RL and we instead seek to understand what can be achieved when using RL with a much simpler centroidal model when applied to quadrupedal locomotion. We show that RL-based control of the accelerations of a centroidal model is surprisingly effective, when combined with a quadratic program to realize the commanded actions via ground contact forces. It allows for a simple reward structure, reduced computational costs, and robust sim-to-real transfer. We show the generality of the method by demonstrating flat-terrain gaits, stepping-stone locomotion, two-legged in-place balance, balance beam locomotion, and direct sim-to-real transfer.

Citations (60)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.