Papers
Topics
Authors
Recent
Search
2000 character limit reached

Vec2GC -- A Graph Based Clustering Method for Text Representations

Published 15 Apr 2021 in cs.IR and cs.LG | (2104.09439v2)

Abstract: NLP pipelines with limited or no labeled data, rely on unsupervised methods for document processing. Unsupervised approaches typically depend on clustering of terms or documents. In this paper, we introduce a novel clustering algorithm, Vec2GC (Vector to Graph Communities), an end-to-end pipeline to cluster terms or documents for any given text corpus. Our method uses community detection on a weighted graph of the terms or documents, created using text representation learning. Vec2GC clustering algorithm is a density based approach, that supports hierarchical clustering as well.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.