Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Vec2GC -- A Graph Based Clustering Method for Text Representations (2104.09439v2)

Published 15 Apr 2021 in cs.IR and cs.LG

Abstract: NLP pipelines with limited or no labeled data, rely on unsupervised methods for document processing. Unsupervised approaches typically depend on clustering of terms or documents. In this paper, we introduce a novel clustering algorithm, Vec2GC (Vector to Graph Communities), an end-to-end pipeline to cluster terms or documents for any given text corpus. Our method uses community detection on a weighted graph of the terms or documents, created using text representation learning. Vec2GC clustering algorithm is a density based approach, that supports hierarchical clustering as well.

Citations (1)

Summary

We haven't generated a summary for this paper yet.