Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-Supervised WiFi-Based Activity Recognition (2104.09072v1)

Published 19 Apr 2021 in cs.NI and cs.LG

Abstract: Traditional approaches to activity recognition involve the use of wearable sensors or cameras in order to recognise human activities. In this work, we extract fine-grained physical layer information from WiFi devices for the purpose of passive activity recognition in indoor environments. While such data is ubiquitous, few approaches are designed to utilise large amounts of unlabelled WiFi data. We propose the use of self-supervised contrastive learning to improve activity recognition performance when using multiple views of the transmitted WiFi signal captured by different synchronised receivers. We conduct experiments where the transmitters and receivers are arranged in different physical layouts so as to cover both Line-of-Sight (LoS) and non LoS (NLoS) conditions. We compare the proposed contrastive learning system with non-contrastive systems and observe a 17.7% increase in macro averaged F1 score on the task of WiFi based activity recognition, as well as significant improvements in one- and few-shot learning scenarios.

Citations (11)

Summary

We haven't generated a summary for this paper yet.