A Branch-and-Cut Algorithm for Mixed Integer Bilevel Linear Optimization Problems and Its Implementation
Abstract: In this paper, we describe a comprehensive algorithmic framework for solving mixed integer bilevel linear optimization problems (MIBLPs) using a generalized branch-and-cut approach. The framework presented merges features from existing algorithms (for both traditional mixed integer linear optimization and MIBLPs) with new techniques to produce a flexible and robust framework capable of solving a wide range of bilevel optimization problems. The framework has been fully implemented in the open-source solver MibS. The paper describes the algorithmic options offered by MibS and presents computational results evaluating the effectiveness of the various options for the solution of a number of classes of bilevel optimization problems from the literature.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.