Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gaussian Dynamic Convolution for Efficient Single-Image Segmentation (2104.08783v2)

Published 18 Apr 2021 in cs.CV

Abstract: Interactive single-image segmentation is ubiquitous in the scientific and commercial imaging software. In this work, we focus on the single-image segmentation problem only with some seeds such as scribbles. Inspired by the dynamic receptive field in the human being's visual system, we propose the Gaussian dynamic convolution (GDC) to fast and efficiently aggregate the contextual information for neural networks. The core idea is randomly selecting the spatial sampling area according to the Gaussian distribution offsets. Our GDC can be easily used as a module to build lightweight or complex segmentation networks. We adopt the proposed GDC to address the typical single-image segmentation tasks. Furthermore, we also build a Gaussian dynamic pyramid Pooling to show its potential and generality in common semantic segmentation. Experiments demonstrate that the GDC outperforms other existing convolutions on three benchmark segmentation datasets including Pascal-Context, Pascal-VOC 2012, and Cityscapes. Additional experiments are also conducted to illustrate that the GDC can produce richer and more vivid features compared with other convolutions. In general, our GDC is conducive to the convolutional neural networks to form an overall impression of the image.

Citations (37)

Summary

We haven't generated a summary for this paper yet.