Papers
Topics
Authors
Recent
2000 character limit reached

Joint Passage Ranking for Diverse Multi-Answer Retrieval

Published 17 Apr 2021 in cs.CL and cs.AI | (2104.08445v2)

Abstract: We study multi-answer retrieval, an under-explored problem that requires retrieving passages to cover multiple distinct answers for a given question. This task requires joint modeling of retrieved passages, as models should not repeatedly retrieve passages containing the same answer at the cost of missing a different valid answer. In this paper, we introduce JPR, the first joint passage retrieval model for multi-answer retrieval. JPR makes use of an autoregressive reranker that selects a sequence of passages, each conditioned on previously selected passages. JPR is trained to select passages that cover new answers at each timestep and uses a tree-decoding algorithm to enable flexibility in the degree of diversity. Compared to prior approaches, JPR achieves significantly better answer coverage on three multi-answer datasets. When combined with downstream question answering, the improved retrieval enables larger answer generation models since they need to consider fewer passages, establishing a new state-of-the-art.

Citations (34)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.