Papers
Topics
Authors
Recent
Search
2000 character limit reached

PAC-Bayesian Matrix Completion with a Spectral Scaled Student Prior

Published 16 Apr 2021 in stat.ML and cs.LG | (2104.08191v2)

Abstract: We study the problem of matrix completion in this paper. A spectral scaled Student prior is exploited to favour the underlying low-rank structure of the data matrix. We provide a thorough theoretical investigation for our approach through PAC-Bayesian bounds. More precisely, our PAC-Bayesian approach enjoys a minimax-optimal oracle inequality which guarantees that our method works well under model misspecification and under general sampling distribution. Interestingly, we also provide efficient gradient-based sampling implementations for our approach by using Langevin Monte Carlo. More specifically, we show that our algorithms are significantly faster than Gibbs sampler in this problem. To illustrate the attractive features of our inference strategy, some numerical simulations are conducted and an application to image inpainting is demonstrated.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.