Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Tracing Topic Transitions with Temporal Graph Clusters (2104.07836v1)

Published 16 Apr 2021 in cs.CL

Abstract: Twitter serves as a data source for many NLP tasks. It can be challenging to identify topics on Twitter due to continuous updating data stream. In this paper, we present an unsupervised graph based framework to identify the evolution of sub-topics within two weeks of real-world Twitter data. We first employ a Markov Clustering Algorithm (MCL) with a node removal method to identify optimal graph clusters from temporal Graph-of-Words (GoW). Subsequently, we model the clustering transitions between the temporal graphs to identify the topic evolution. Finally, the transition flows generated from both computational approach and human annotations are compared to ensure the validity of our framework.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.