Papers
Topics
Authors
Recent
Search
2000 character limit reached

Zigzag path connects two Monte Carlo samplers: Hamiltonian counterpart to a piecewise deterministic Markov process

Published 15 Apr 2021 in stat.CO and math.PR | (2104.07694v4)

Abstract: Zigzag and other piecewise deterministic Markov process samplers have attracted significant interest for their non-reversibility and other appealing properties for Bayesian posterior computation. Hamiltonian Monte Carlo is another state-of-the-art sampler, exploiting fictitious momentum to guide Markov chains through complex target distributions. We establish an important connection between the zigzag sampler and a variant of Hamiltonian Monte Carlo based on Laplace-distributed momentum. The position and velocity component of the corresponding Hamiltonian dynamics travels along a zigzag path paralleling the Markovian zigzag process; however, the dynamics is non-Markovian in this position-velocity space as the momentum component encodes non-immediate pasts. This information is partially lost during a momentum refreshment step, in which we preserve its direction but re-sample magnitude. In the limit of increasingly frequent momentum refreshments, we prove that Hamiltonian zigzag converges strongly to its Markovian counterpart. This theoretical insight suggests that, when retaining full momentum information, Hamiltonian zigzag can better explore target distributions with highly correlated parameters by suppressing the diffusive behavior of Markovian zigzag. We corroborate this intuition by comparing performance of the two zigzag cousins on high-dimensional truncated multivariate Gaussians, including a 11,235-dimensional target arising from a Bayesian phylogenetic multivariate probit modeling of HIV virus data.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.