Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Note on Data Simulations for Voting by Evaluation (2104.07666v1)

Published 15 Apr 2021 in cs.AI

Abstract: Voting rules based on evaluation inputs rather than preference orders have been recently proposed, like majority judgement, range voting or approval voting. Traditionally, probabilistic analysis of voting rules supposes the use of simulation models to generate preferences data, like the Impartial Culture (IC) or Impartial and Anonymous Culture (IAC) models. But these simulation models are not suitable for the analysis of evaluation-based voting rules as they generate preference orders instead of the needed evaluations. We propose in this paper several simulation models for generating evaluation-based voting inputs. These models, inspired by classical ones, are defined, tested and compared for recommendation purpose.

Summary

We haven't generated a summary for this paper yet.