Papers
Topics
Authors
Recent
Search
2000 character limit reached

Endpoint Fourier restriction and unrectifiability

Published 15 Apr 2021 in math.CA | (2104.07482v1)

Abstract: We show that if a measure of dimension $s$ on $\mathbb{R}d$ admits $(p,q)$ Fourier restriction for some endpoint exponents allowed by its dimension, namely $q=\tfrac{s}{d}p'$ for some $p>1$, then it is either absolutely continuous or $1$-purely unrectifiable.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.