Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Sequence Segmentation as Determining the Leftmost Segments (2104.07217v1)

Published 15 Apr 2021 in cs.CL

Abstract: Prior methods to text segmentation are mostly at token level. Despite the adequacy, this nature limits their full potential to capture the long-term dependencies among segments. In this work, we propose a novel framework that incrementally segments natural language sentences at segment level. For every step in segmentation, it recognizes the leftmost segment of the remaining sequence. Implementations involve LSTM-minus technique to construct the phrase representations and recurrent neural networks (RNN) to model the iterations of determining the leftmost segments. We have conducted extensive experiments on syntactic chunking and Chinese part-of-speech (POS) tagging across 3 datasets, demonstrating that our methods have significantly outperformed previous all baselines and achieved new state-of-the-art results. Moreover, qualitative analysis and the study on segmenting long-length sentences verify its effectiveness in modeling long-term dependencies.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yangming Li (32 papers)
  2. Lemao Liu (62 papers)
  3. Kaisheng Yao (16 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.