Papers
Topics
Authors
Recent
2000 character limit reached

Load and Renewable-Following Control of Linearization-Free Differential Algebraic Equation Power System Models

Published 13 Apr 2021 in math.OC, cs.SY, and eess.SY | (2104.05957v2)

Abstract: Electromechanical transients in power networks are mostly caused by a mismatch between power consumption and production, causing generators to deviate from the nominal frequency. To that end, feedback control algorithms have been designed to perform frequency and load/renewables-following control. In particular, the literature addressed a plethora of grid- and frequency-control challenges with a focus on linearized, differential equation models whereby algebraic constraints (i.e., power flows) are eliminated. This is in contrast with the more realistic nonlinear differential algebraic equation (NDAE) models. Yet, as grids are increasingly pushed to their limits via intermittent renewables and varying loads, their physical states risk escaping operating regions due to either a poor prediction or sudden changes in renewables or demands -- deeming a feedback controller based on a linearization point virtually unusable. In lieu of linearized differential equation models, the objective of this paper is to design a simple, purely decentralized, linearization-free, feedback control law for NDAE models of power networks. The aim of such a controller is to primarily stabilize frequency oscillations after a significant, unknown disturbance in renewables or loads. Although the controller design involves advanced NDAE system theory, the controller itself is as simple as a decentralized proportional or linear quadratic regulator in its implementation. Case studies demonstrate that the proposed controller is able to stabilize dynamic and algebraic states under significant disturbances.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.