Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Reinforcement Learning Based Controller for Active Heave Compensation (2104.05599v3)

Published 12 Apr 2021 in eess.SY and cs.SY

Abstract: Heave compensation is an essential part in various offshore operations. It is used in various applications, which include on-loading or off-loading systems, offshore drilling, landing helicopter on oscillating structures, and deploying and retrieving manned submersibles. In this paper, a reinforcement learning (RL) based controller is proposed for active heave compensation using a deep deterministic policy gradient (DDPG) algorithm. A DDPG algorithm which is a model-free, online reinforcement learning method, is adopted to capture the experience of the agent during the training trials. The simulation results demonstrate up to 10 % better heave compensation performance of RL controller as compared to a tuned Proportional-Derivative Control. The performance of the proposed method is compared with respect to heave compensation, offset tracking, disturbance rejection, and noise attenuation.

Citations (12)

Summary

We haven't generated a summary for this paper yet.