Papers
Topics
Authors
Recent
Search
2000 character limit reached

Asymptotics for densities of exponential functionals of subordinators

Published 12 Apr 2021 in math.PR | (2104.05381v3)

Abstract: In this paper we derive non-classical Tauberian asymptotic at infinity for the tail, the density and the derivatives thereof of a large class of exponential functionals of subordinators. More precisely, we consider the case when the L\'evy measure of the subordinator satisfies the well-known and mild condition of positive increase. This is achieved via a convoluted application of the saddle point method to the Mellin transform of these exponential functionals which is given in terms of Bernstein-gamma functions. To apply the saddle point method we improved the Stirling type of asymptotic for Bernstein-gamma functions and the latter is of interest beyond this paper as the Bernstein-gamma functions are applicable in different settings especially through their asymptotic behaviour in the complex plane. As an application we have derived the asymptotic of the density and its derivatives for all exponential functionals of non-decreasing, potentially compound Poisson processes which turns out to be precisely as that of an exponentially distributed random variable. We show further that a large class of densities are even analytic in a cone of the complex plane.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.