Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Asymptotic topology of excursion and nodal sets of Gaussian random fields (2104.05276v1)

Published 12 Apr 2021 in math.PR

Abstract: Let M be a compact smooth manifold of dimension n with or without boundary, and f : M $\rightarrow$ R be a smooth Gaussian random field. It is very natural to suppose that for a large positive real u, the random excursion set {f $\ge$ u} is mostly composed of a union of disjoint topological n-balls. Using the constructive part of (stratified) Morse theory we prove that in average, this intuition is true, and provide for large u the asymptotic of the expected number of such balls, and so of connected components of {f $\ge$ u}, see Theorem 1.2. We similarly show that in average, the high nodal sets {f = u} are mostly composed of spheres, with the same asymptotic than the one for excursion set. A refinement of these results using the average of the Euler characteristic given by [2] provides a striking asymptotic of the constant defined by F. Nazarov and M. Sodin, again for large u, see Theorem 1.11. This new Morse theoretical approach of random topology also applies to spherical spin glasses with large dimension, see Theorem 1.14.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube