Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

iELAS: An ELAS-Based Energy-Efficient Accelerator for Real-Time Stereo Matching on FPGA Platform (2104.05112v1)

Published 11 Apr 2021 in cs.AR, cs.CV, and cs.RO

Abstract: Stereo matching is a critical task for robot navigation and autonomous vehicles, providing the depth estimation of surroundings. Among all stereo matching algorithms, Efficient Large-scale Stereo (ELAS) offers one of the best tradeoffs between efficiency and accuracy. However, due to the inherent iterative process and unpredictable memory access pattern, ELAS can only run at 1.5-3 fps on high-end CPUs and difficult to achieve real-time performance on low-power platforms. In this paper, we propose an energy-efficient architecture for real-time ELAS-based stereo matching on FPGA platform. Moreover, the original computational-intensive and irregular triangulation module is reformed in a regular manner with points interpolation, which is much more hardware-friendly. Optimizations, including memory management, parallelism, and pipelining, are further utilized to reduce memory footprint and improve throughput. Compared with Intel i7 CPU and the state-of-the-art CPU+FPGA implementation, our FPGA realization achieves up to 38.4x and 3.32x frame rate improvement, and up to 27.1x and 1.13x energy efficiency improvement, respectively.

Citations (19)

Summary

We haven't generated a summary for this paper yet.