Papers
Topics
Authors
Recent
Search
2000 character limit reached

Selecting Penalty Parameters of High-Dimensional M-Estimators using Bootstrapping after Cross-Validation

Published 10 Apr 2021 in math.ST, econ.EM, and stat.TH | (2104.04716v5)

Abstract: We develop a new method for selecting the penalty parameter for $\ell_{1}$-penalized M-estimators in high dimensions, which we refer to as bootstrapping after cross-validation. We derive rates of convergence for the corresponding $\ell_1$-penalized M-estimator and also for the post-$\ell_1$-penalized M-estimator, which refits the non-zero entries of the former estimator without penalty in the criterion function. We demonstrate via simulations that our methods are not dominated by cross-validation in terms of estimation errors and can outperform cross-validation in terms of inference. As an empirical illustration, we revisit Fryer Jr (2019), who investigated racial differences in police use of force, and confirm his findings.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.