Papers
Topics
Authors
Recent
2000 character limit reached

Text2Chart: A Multi-Staged Chart Generator from Natural Language Text

Published 9 Apr 2021 in cs.CL, cs.HC, cs.IR, and cs.LG | (2104.04584v1)

Abstract: Generation of scientific visualization from analytical natural language text is a challenging task. In this paper, we propose Text2Chart, a multi-staged chart generator method. Text2Chart takes natural language text as input and produce visualization as two-dimensional charts. Text2Chart approaches the problem in three stages. Firstly, it identifies the axis elements of a chart from the given text known as x and y entities. Then it finds a mapping of x-entities with its corresponding y-entities. Next, it generates a chart type suitable for the given text: bar, line or pie. Combination of these three stages is capable of generating visualization from the given analytical text. We have also constructed a dataset for this problem. Experiments show that Text2Chart achieves best performances with BERT based encodings with LSTM models in the first stage to label x and y entities, Random Forest classifier for the mapping stage and fastText embedding with LSTM for the chart type prediction. In our experiments, all the stages show satisfactory results and effectiveness considering formation of charts from analytical text, achieving a commendable overall performance.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.