Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Creating Robust Deep Neural Networks With Coded Distributed Computing for IoT Systems (2104.04447v1)

Published 9 Apr 2021 in cs.DC

Abstract: The increasing interest in serverless computation and ubiquitous wireless networks has led to numerous connected devices in our surroundings. Among such devices, IoT devices have access to an abundance of raw data, but their inadequate resources in computing limit their capabilities. Specifically, with the emergence of deep neural networks (DNNs), not only is the demand for the computing power of IoT devices increasing but also privacy concerns are pushing computations towards the edge. To overcome inadequate resources, several studies have proposed the distribution of work among IoT devices. These promising methods harvest the aggregated computing power of the idle IoT devices in an environment. However, since such a distributed system strongly relies on each device, unstable latencies, and intermittent failures, the common characteristics of IoT devices and wireless networks, cause high recovery overheads. To reduce this overhead, we propose a novel robustness method with a close-to-zero recovery latency for DNN computations. Our solution never loses a request or spends time recovering from a failure. To do so, first, we analyze the underlying matrix-matrix computations affected by distribution. Then, we introduce a new coded distributed computing (CDC) method that has a constant cost with the increasing number of devices, unlike the linear cost of modular redundancies. Moreover, our method is applied in the library level, without requiring extensive changes to the program, while still ensuring a balanced work assignment during distribution. To illustrate our method, we perform experiments with distributed systems comprising up to 12 Raspberry Pis.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Ramyad Hadidi (15 papers)
  2. Jiashen Cao (8 papers)
  3. Hyesoon Kim (27 papers)

Summary

We haven't generated a summary for this paper yet.