Papers
Topics
Authors
Recent
Search
2000 character limit reached

Statistical inference for a stochastic wave equation with Malliavin calculus

Published 9 Apr 2021 in math.ST, math.PR, and stat.TH | (2104.04176v2)

Abstract: In this paper we study asymptotic properties of the maximum likelihood estimator (MLE) for the speed of a stochastic wave equation. We follow a well-known spectral approach to write the solution as a Fourier series, then we project the solution to a $N$-finite dimensional space and find the estimator as a function of the time and $N$. We then show consistency of the MLE using classical stochastic analysis. Afterward we prove the asymptotic normality using the Malliavin-Stein method. We also study asymptotic properties of a discretized version of the MLE for the parameter. We provide this asymptotic analysis of the proposed estimator as the number of Fourier modes, $N$, used in the estimation and the observation time go to infinity. Finally, we illustrate the theoretical results with some numerical experiments.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.