Asymmetric cooperative motion in one dimension (2104.03369v2)
Abstract: We prove distributional convergence for a family of random processes on $\mathbb{Z}$, which we call asymmetric cooperative motions. The model generalizes the "totally asymmetric hipster random walk" introduced in [Addario-Berry, Cairns, Devroye, Kerriou and Mitchell, 2020]. We present a novel approach based on connecting a temporal recurrence relation satisfied by the cumulative distribution functions of the process to the theory of finite difference schemes for Hamilton-Jacobi equations [Crandall and Lyons, 1984]. We also point out some surprising lattice effects that can persist in the distributional limit, and propose several generalizations and directions for future research.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.