Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spotify at TREC 2020: Genre-Aware Abstractive Podcast Summarization (2104.03343v1)

Published 7 Apr 2021 in cs.CL

Abstract: This paper contains the description of our submissions to the summarization task of the Podcast Track in TREC (the Text REtrieval Conference) 2020. The goal of this challenge was to generate short, informative summaries that contain the key information present in a podcast episode using automatically generated transcripts of the podcast audio. Since podcasts vary with respect to their genre, topic, and granularity of information, we propose two summarization models that explicitly take genre and named entities into consideration in order to generate summaries appropriate to the style of the podcasts. Our models are abstractive, and supervised using creator-provided descriptions as ground truth summaries. The results of the submitted summaries show that our best model achieves an aggregate quality score of 1.58 in comparison to the creator descriptions and a baseline abstractive system which both score 1.49 (an improvement of 9%) as assessed by human evaluators.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Rezvaneh Rezapour (19 papers)
  2. Sravana Reddy (8 papers)
  3. Ann Clifton (13 papers)
  4. Rosie Jones (13 papers)
Citations (8)