Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Single Source One Shot Reenactment using Weighted motion From Paired Feature Points (2104.03117v1)

Published 7 Apr 2021 in cs.CV

Abstract: Image reenactment is a task where the target object in the source image imitates the motion represented in the driving image. One of the most common reenactment tasks is face image animation. The major challenge in the current face reenactment approaches is to distinguish between facial motion and identity. For this reason, the previous models struggle to produce high-quality animations if the driving and source identities are different (cross-person reenactment). We propose a new (face) reenactment model that learns shape-independent motion features in a self-supervised setup. The motion is represented using a set of paired feature points extracted from the source and driving images simultaneously. The model is generalised to multiple reenactment tasks including faces and non-face objects using only a single source image. The extensive experiments show that the model faithfully transfers the driving motion to the source while retaining the source identity intact.

Citations (7)

Summary

We haven't generated a summary for this paper yet.