Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Novel Approach for Semiconductor Etching Process with Inductive Biases (2104.02468v1)

Published 6 Apr 2021 in stat.ML, cs.AI, cs.LG, physics.comp-ph, and physics.plasm-ph

Abstract: The etching process is one of the most important processes in semiconductor manufacturing. We have introduced the state-of-the-art deep learning model to predict the etching profiles. However, the significant problems violating physics have been found through various techniques such as explainable artificial intelligence and representation of prediction uncertainty. To address this problem, this paper presents a novel approach to apply the inductive biases for etching process. We demonstrate that our approach fits the measurement faster than physical simulator while following the physical behavior. Our approach would bring a new opportunity for better etching process with higher accuracy and lower cost.

Citations (5)

Summary

We haven't generated a summary for this paper yet.