Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning from Self-Discrepancy via Multiple Co-teaching for Cross-Domain Person Re-Identification (2104.02265v5)

Published 6 Apr 2021 in cs.CV

Abstract: Employing clustering strategy to assign unlabeled target images with pseudo labels has become a trend for person re-identification (re-ID) algorithms in domain adaptation. A potential limitation of these clustering-based methods is that they always tend to introduce noisy labels, which will undoubtedly hamper the performance of our re-ID system. To handle this limitation, an intuitive solution is to utilize collaborative training to purify the pseudo label quality. However, there exists a challenge that the complementarity of two networks, which inevitably share a high similarity, becomes weakened gradually as training process goes on; worse still, these approaches typically ignore to consider the self-discrepancy of intra-class relations. To address this issue, in this paper, we propose a multiple co-teaching framework for domain adaptive person re-ID, opening up a promising direction about self-discrepancy problem under unsupervised condition. On top of that, a mean-teaching mechanism is leveraged to enlarge the difference and discover more complementary features. Comprehensive experiments conducted on several large-scale datasets show that our method achieves competitive performance compared with the state-of-the-arts.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Suncheng Xiang (27 papers)
  2. Yuzhuo Fu (24 papers)
  3. Mengyuan Guan (4 papers)
  4. Ting Liu (329 papers)
Citations (20)

Summary

We haven't generated a summary for this paper yet.